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The second-order transport terms in a monatomic gas, originally derived by Burnett 
from Boltzmann’s equation via the Chapman-Enskog iteration, have the curious 
property of being dependent on the observer’s reference frame. However, frame- 
indifference has long been accepted as an essential property of constitutive equations 
in continuum mechanics. Various attempts have been made to find errors in the 
kinetic theory, but these have been countered by physical accounts of the frame- 
dependent terms that are independent of the Chapman-Enskog theory. 

It is shown in this paper that  both the Chapman-Enskog theory and the physical 
models are based on an inappropriate definition of the peculiar velocity. The 
Chapman-Enskog theory is easily corrected, and the result is a kinetic theory in 
harmony with the principle of material frame-indifference. A brief survey of the 
debate on this topic is presented, and corrected expressions are given for the Burnett 
terms. 

1. Introduction 
The generally accepted Chapman-Enskog theory, in which Boltzmann’s equation 

is solved by an iterative process, has the defect of being frame-dependent, with the 
result that  the expressions i t  gives for the pressure tensor p and the heat-flux vector 
q depend on the choice of the reference frame in which molecular velocities are 
specified. This frame-dependence appears first in the terms of second order in the 
Chapman-Enskog expansion parameter E = 7 19 In # 1 ,  where 7 is the collision 
interval, 9 is the material time derivative in 6-dimensional phase space, and # is a 
typical macroscopic parameter like the pressure p ,  temperature Tor the fluid velocity 
v.  Thus, in the expansions 

p = p / + x , + x , +  ..., q = q1+q2= ..., xr  = O ( E r ) ,  qr = O ( E T ) ,  (1.1) 

=I - - -2pW8, q l =  -kVT,  p = p ~ 7 ~ ’  k = $cVp 11-2) 

whereas the classical first-order terms (for a monatomic gas) 
0 

are frame-indifferent,t as we shall show, the expressions for x 2  and q2, usually 
associated with the name Burnett (1935), are not. 

Under normal conditions the second-order terms n2 and q2 are only small 
corrections to q1 and xl, so their frame-dependence appears to be no more than a 
curious anomaly, with no practical significance. However, in a magnetoplasma it is 
in fact possible for terms O(e2)  to be much more important than the corresponding 

t Throughout this paper ‘frame-indifferent’ means ‘not dependent on the motion of the 
observer’. In  certain media rotation l2 relative to the fixed stars can generate a microstructure (see 
$6) that alters the media properties. But provided these properties depend only on Q, and not on 
51-D,, where 51, is the observer’s angular velocity, they are ‘frame-indifferent’ on our definition. 
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first-order terms (Woods 1983), and in this case a frame-indifferent kinetic theory is 
essential. 

There is also the general question of whether constitutive relations in continuum 
mechanics should be frame-indifferent or not. Before Muller (1972) drew attention 
to the frame-dependence of the relations for x,  and q2, i t  was generally accepted that 
correctly formulated constitutive relations were necessarily frame-indifferent (Eringen 
1962 ; Truesdell & No11 1965). Why, i t  may be asked, should the motion of the observer 
have any influence on the response of a continuum to imposed driving 'forces' like 
temperature gradients, boundary stresses, etc. ? The conflict between standard 
kinetic theory and the principle of material frame-indifference has generated an 
interesting controversy that we shall review after outlining the Chapman-Enskog 
theory. 

The objectives of this paper are to replace this theory by a frame-indifferent kinetic 
theory, to deduce corresponding expressions for x2 and q2,  and in doing this to resolve 
the present conflict between kinetic theory and continuum mechanics. 

That this conflict is substantive and not merely a question of different models 
admitting distinct solutions, can be seen as follows. Let p be the density and F be 
the non-collisional or body force acting on the molecules per unit mass, then, in a frame 
L,  conservation of mass, momentum and energy gives 

Dp+pV*v = 0 ,  pDv+V*p = pF, (1.3a, b )  

( 1 . 3 ~  d )  

D being the material time derivative in the fluid. These balance equations are 
frame-indifferent in the formal sense that corresponding terms of the equations in 
different frames must have the same physical significance. 

Let primes denote quantities in a frame L' rotating with an angular velocity o 
relative to L, then in L' (1.3b) becomes 

~ D ' v '  + V'p '  = pF, 
provided that 

F ' =  F - 2 o x v ' - o x ( ( o x r ) + V . ( p ' - p )  (1.4) 

a t  a point r measured from the axis of rotation. But F' is a body force, independent 
of the nature of the medium, only if V * @ ' - p )  = 0. Similarly, as the (scalar) terms 
in ( 1 . 3 ~ )  represent distinct physical processes, independent of the observer's motion, 
they have the same values in L' as in L, i.e. V * q  = V*q' and p':Vv' = p:Vv. 
Moreover, as p and pf are symmetric, p':Vv' = ~ ' : ( V V ' ) ~  = p':(Vv)" = p :  (VV)",  so 
that p' = p. Thus any method of obtaining constitutive relations for p and q should 
entail 

pr = p, V*q'  = v - q .  (1.5) 

The second of these physical constraints can be reduced to  q' = q by considering the 
equation for entropy change, but we shall not pursue this. 

2. The Chapman-Enskog kinetic theory 

enable us to  detect the point a t  which frame-dependence is tacitly introduced. 
A brief outline of the Chapman-Enskog theory (see Chapman & Cowling 1970) will 

Let f(r, w, t )  drdw be the number of molecules lying in the element drdw of 
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6-dimensional phase space, then, provided the body force F is independent of the 
molecular velocity w, the distribution function f satisfies the kinetic equation 

where C/T is the rate of change due to particle collisions, 7 being the collision interval. 
The average of w over velocity space is the fluid velocity u,  i.e. 

~ ( r ,  t )  = - n ' J  wfdw, (2.2) 

c = w - v ( r , t ) ,  (2.3) 

Wjl= 7 9 ,  (2.4) 

(2.5) 

where n(r,  t )  is the number density. We now introduce the 'peculiar' velocity 

replacef(r, w ,  t )  byf(r, c,  t ) ,  and write (2.1) in the form 

where a 
ac 

9 3 D+c.V+(F-Dv-c*e)--- ,  e = V v ,  

and D is the derivative defined in (1.3). 

where, by the usual arguments, the equilibrium distribution f o  is 
It is now assumed that 7 9  lnf = O ( E )  < 1. To zero order in E ,  (2.4) gives C ( f o f o )  = 0, 

The next step is to  substitute the expansions 

f=fo+f i+fz+ ..., 9 = 9,,+91+9z+ ..., f, = O(er) ,  79,. = O(er+l)? (2.7) 

into (2.4) to  obtain the sequence of equations 

Q0 = 0, Q), = -7901nf0, QZ = 7 9 ~ f 1  7g11nf0, ... , 12-81 f o  
where 

Equations (2.8) are solved in turn forf,,f,, .... 

D,n = 0, 

That 9 needs to be expanded is evident from ( 1 . 1 )  and (1.3), which yield 

(2.10) 

Don = -nV*u, 

pD,v = -Vp+pF,  pD,v = -V*X, ( r  2 l ) ,  

pc,D,,T = - p V * v ,  PC,D,T = -x , :VV-V*~ , ,  

wherei D, is O(er). Hence from (2.5) 
1 a 
P aC 

9,. = D,+- V*X,.*-- ( r  > 1) .  (2.11) go = Do + c* V + (7 - c*  e) *;, 

The only higher-order derivative requiredlater is 9, Info. From (2.6), (2.10) and (2.11) 
this is g1 lnf,, = D, In n+ (w2 - 8) D,ln T- 2C-2c*9, c 

Let 

(2.12) 1 

P 
= --{(id- 1)  (re, .- vv + v-q,) + V'X,'C). 

g =_ CVInp, h = CVlnT, 2 =_ V - v ,  (2.13) 

t In Chapman &I Cowling's text the order indices are attached to a/at rather than to D, but the 
change introduced in (2.10) makes no essential difference to the final expressions. 
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then from (2.10) and (2.11) 

g o w  = +g-+ww.h-w.(e-;e"z), 

9 0 1 n p  = wag-$;, 9 o l n T  = w-h-te". 

( 2 . 1 4 ~ )  

(2.14b) 

B y p  = knT and (2.6), lnfo = lnp-$lnT-w2+const, whence 

0 
golnf0  = (&-$)w-h+2ww:e. (2.15) 

0 
where e ' i s  the deviator of e (symmetrical part from which the trace has been 

removed). 
When(2.8)have beensolvedforf,,r = 1,2,  ..., theheat-fluxvectorq = 41+42+... 

and the pressure tensor p = p / +  x1 + x2 + . . . , can be found from 

q, = $rn c2cf, dc = QdQ, 

xr = m ccf, dc = ecw2#, dw QQ dQ, 

s 
s 

where 
#r G f r l f o ?  

(2.16) 

(2.17) 

(2.18) 

6 = w/w, 4.n dSZ is the element of solid angle, and the integrands follow from (2.6). 
To make further progress, we need expressions for the collision operators @, defined 

in (2.9). The Boltzmann collision operator is complicated, and as its frame-indifference 
is not in question (Wang 1975), we shall adopt the BGK relaxation model, 
C = fo-f = -(fi+f2+...),  for which (2.9) and (2.18) give 

@r = #r ( r  2 1). (2.19) 

As we shall see, this is remarkably accurate provided one ad hoc modification is 
adopted. 

3. The Burnett terms 
We shall now calculate the Burnett expressions for x 2  and q2, so that the effect 

of the corrections we shall make later to remove their frame-dependence is easily 
traced. It is also useful to have a simple account of the derivation of x2 and q2 to 
replace the complicated treatment (albeit accurate for the frame-indifferent terms) 
given in advanced texts on kinetic theory (Chapman & Cowling 1970; Fertziger & 
Kaper 1972). 

The relaxation collision operator introduced in (2.19) has one minor disadvantage, 
namely that i t  gives unity for the Prandtl number, P, = pG,/k instead of the correct 
value, which in a neutral monatomic gas is f .  While this can be overcome by allowing 
the collision interval 7 to depend on c ,  in order to conserve the number, momentum 
and energy of particles at collisions, i t  is then necessary to complicate (2.19) 
somewhat. We shall not do this, but will follow a different method that is quite 
accurate, despite appearing to  be ad hoc. The correct Prandtl number is obtained by 
adopting two distinct collision intervals, say r1 for momentum transport, and r2 for 
energy transport, related by 

71 = PrT2 = $2, (3.1) 
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and adopting the rule : 

Forquse T = T ~ ;  forpuse 7 = T ~ .  (3.2) 

With this modification the relaxation model gives exact values for all eleven 
coefficients in Burnett's second-order theory. 

The first-order theory follows from (2.8), (2.15)-(2.18) and (3.2). W e  find 

(3.3) 
0 

$1 = -Tz(W2-' 2)  W .h- 2'f1 ww; e, 

where 

0 

7rl = -2pVv, q1 = -KVT, 

By (2.8) and (2.18) second-order theory is based on 

$52 = - ~ ~ ~ 0 $ 1 + $ 5 1 ~ 0 ~ ~ f o + ~ l ~ ~ f o ~ .  (3.6) 

If i t  is assumed that molecules a distance r apart repel with a force proportional to 
T - ~ ,  the usual dimensional analysis yields 

2 
v-1'  

where A and s are constants. It follows from (2.14) that 

p~~ = ,LL = AT8, s = &+- (3.7) 

9 0 ~ 1  = 7190(slnT-lnp) = T ~ ( S W ' ~ - W ~ ~ + $ $ ( ~ - % ) ) ,  (3.8) 

and similarly for 9 0 7 2 .  From (2.12), (3.4) and (3.8) we get 

g1 lnfo = ~ T ~ ( ( + W ~  - 1 )  8: e + (V. e + 8e.V In T) -c}  
0 0 0  

5 k  
2 m  

+--'r2(+W2-l) (V2T+sVT*VlnT). (3.9) 

To calculate 90$51 we use (2.14), (3.3) and 
0 0 0 

g 0 h  = .530h+c.Vh, g0e = Doe+c*Ve. (3.10) 

Substituting these expressions into (3.6), we arrive at  a value for $2 that can be 

$1 = T ~ , ( $ - Y )  (w2--&) e " w - h + ~ ~ - ( w ~ - & )  w.(DVT-e*VT) 

arranged as 

c 
T 

0 0 0 + 27,g.e- w - 27,g* www; e+ 2 [ ( ~ ~  + T ~ )  (wz -i) + T ~ S ]  ha WWW: e 

- 2~~ 8h.e. w + 2~~ C( www : V e  - V * e *  w)] 

+ T el($- s) e ww;  8 + 2~~ W *  (De- 2e.e)- w + - T ~ [ ( W ~  -8) w*VVT* w 

0 0 0 

X 0 0 0 2k 
{ m 

-%(+W2 - 1 )  V2T] + &T,(w' -I) g - h  - T2(w2 -;) g* WW.h 

k k 
m m 

- - T ~ ( w ,  -%+is) VT-V In T + 2-7,[(w2 -%) (w2 -8 + s )  - w2] VT. ww 'V In T 

0 0 
+ ~ T ~ ~ : W W W W : ~ - ~ T ~ ( ~ W ~ -  (3.11) 
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where the first term contributes only to q2 and the second only to zc2. Thus by (3.2) 
we put the first T equal to r2 and the second equal to 7,. 

Now substituting (3.11) into (2.16) and (2.17) we arrive a t  the Burnett equations 

(3.12) 

8, W -  vVT+B, (DVT-~~VT)  +8,- 
m P 

with 
el = Y(;-s),  o2 = 5, e3 = -3,  e4 = 3, e5 = Y + ~ ,  

0 __ 
0 1 0  k i  

a , V .  u g  + a,(De - 2e .g )  + w3 - VVT+ a4 -VpVT + a5 -V!i’VT+ as e.e 
m PT mT 

(3.13) with 

All of the above 8- and a-coefficients agree exactly with those obtained from the 
Boltzmann integral. I n  a private communication (1978) Professor T. G. Cowling 
showed that the relaxation model gives exact results for a Maxwellian gas; i.e. he 
obtained (3.12) and (3.13) for the special case s = 1 .  

But according to the arguments presented in $1, the above expressions are wrong, 

e = e++e / -J2x / ,  sl = gV x u, (3.14) 

a, =*(f-s), a 2  = 2, a 3  = 3, a 4  = 0, wg = 3s, WG = 8. 

since, by o x  

0 

the 
- 

0 0 
terms I)VT-e.VT and D e - 2 e . e  contain the frame-dependent parts 

I=DVT+(LxVT,  J = D i + 2 ( 1 ~ $ .  (3.15) 

For let I have the value I’ in a frame L’ rotating with angular velocity w relative 
to the frame L in which (3.15) hold, then 

I’ = D’VT+sl’ x VT = DVT-0  x VT+ (sl-O) x VT = 1-20 x VT; (3.16) 

similarly J’ = J-40  x 2. It follows from (3.12) and (3.13) that  

p’ = p + 4 p 7 ; a 2 o  x 2, ( 3 . 1 7 ~ )  

(3.17 b )  

in disagreement with (1.5). To have frame-indifferent expressions in (3.15) i t  is 
necessary to change the sign of sl. 

We are now in a position to discuss the several attempts to resolve the paradox 
posed by the 82 and a2 terms in (3.12) and (3.13). 

k 
m 

V.9’ = V . q i - 0  x VT*VP, P = 28,-p~;,  

4. Some explanations of the frame-dependence paradox 
As it  is possible to derive the Burnett equations from a generalized mean-free-path 

model (Woods 1979), to resolve the paradox i t  is not sufficient to fault the 
Chapman-Enskog iterative solution of Boltzmann’s equation. The explanation must 
also dispose of apparently sound physical arguments yielding terms of the type given 
in (3.15). 

One such argument is the following. Adding q1 to  (3.12) and using (3.4) and (3.5), 
we find 

where the terms omitted are frame-indifferent. The time derivative in (4.1) is due to 
t,he small delay of r2 in the molecular transport of energy to P(r ,  t )  from points a mean 

q = 41+q2 = q 1 - ~ 2 D q 1 - ~ 2 s l ~ q l + . . . ,  (4.1) 
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FIGURE 1 .  Microconvection of heat. 

free path A away. The molecules experience their last collision on a sphere Y of radius 
h and then move to  the centre P (see figure 1).  The fluid particle centred on P rotates 
about it,  as if in a rigid-body motion with angular velocity Sa = x v .  Thus, during 
the time it takes the molecules to  travel from some point A on Y to P, the fluid motion 
convects some energy in a direction parallel to -a x ql .  And, as r2 is the relaxation 
time for the molecules to lose their excess energy, this convection (relative to P) adds 
-r,5ax q1 to q,  in agreement with (4.1). 

Muller (1972) opened the debate by pointing out that the Ikenberry-Truesdell 
(1956) iterative procedure gave frame-dependent expressions for q and p for a gas 
of Maxwellian molecules. I n  particular he showed that the heat conduction in a rigidly 
rotating gas depends on the angular velocity of the rotation (cf. (3.17)) a fra,me- 
dependence that he attributed to the Coriolis force. Edelen & McLennan (1973) 
followed this lead by showing that the Burnett formulae were also frame-dependent ; 
they concluded that frame-indifference was not a principle of continuum mechanics, 
but was merely a ‘ convenient’ rule (albeit sometimes wrong !). 

Wang (1975, 1976) opposed these conclusions, with the vague argument that 
mathematical uncertainties of various types in the Chapman-Enskog expansion used 
by Burnett left it an open question as to  whether his formula undermined frame- 
indifference or not. Speziale (1981) continued this line, with the claim that the 
iterative procedure used by Chapman and Enskog was a t  fault, specifically that their 
assumption that avlat  did not depend explicitly on t was frame-dependent, and hence 
led to values of q and n similarly defective. But the Chapman-Enskog treatment 
of avlat  is no more than equivalent to eliminating D V - F  from (2.5) by using the 
equation of motion, and, as Do v -  F, D, v ,  D, v ,  . . . are each frame-indifferent, this is 
obviously not the source of the problem. Truesdell & Muncaster (1980) considered 
that the principle of frame-indifference might be saved by even higher-order terms 
neglectedin the Burnett theory, although how a cancellation between frame-dependent 
terms of different differential order could happen was not explained. 

On the other side of the debate, Soderholm (1976) advanced physical arguments, 
based on Miiller’s observation about the Coriolis force, to demonstrate that heat 
conduction in a gas should have the Burnett frame-dependence. And, as his arguments 
did not invoke the Chapman-Enskog theory, i t  followed that Wang’s strictures on 
Burnett’s method were beside the point. 

Prior to writing this paper, the author’s view (Woods 1 9 8 2 ~ )  was that, while all 
the irreversible terms in constitutive relations were certainly frame-indifferent - the 
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associated dissipation could not depend on the observer - this did not necessarily 
apply to all of the reversible terms. Now the Burnett (seoond-order) terms in q and 
p a r e  reversible (Woods 1982a), so they do not contribute to the dissipation, and hence 
(it was argued) do not need to be frame-indifferent. Noting that there were a t  least 
three distinct methods of obtaining the Burnett equations, i.e. from kinetic theory 
(Burnett 1935), from thermodynamic arguments (Woods 1!)80), and from a generalized 
mean-free-path theory (Woods 1979), the author accepted that these were correct and 
hence that frame-indifference applied with certainty only to the irreversible terms. 
However, in the light of the following correction of the Chapman-Enskog theory, this 
conclusion may need revision. 

5. Frame-indifferent kinetic theory 

w = c +  v(r ,  t ) ,  specified by 

for, as the differentials dw and dc are required in this transformation, it is also 
necessary to specify the relation between the reference frames L in which w is 
measured, and 0 in which c is measured. Equation (2.4) is derived from (2.1) on the 
tacit assumption that 0 remains in a fixed orientation relative to L, whereas, wrre 
0 embedded in a fluid element, i t  would rotate relatively to L with an angular velocity 
SZ = +V x v .  There is no justification for maintaining 0 fixed relative to L,  and in the 
author’s view the peculiar velocity c of a given molecule must be defined in a frame 
0 that is convected in both position and orientation with the fluid particle - any other 
choice would be non-unique. 

Referring to figure 1 ,  we see that this change means that the conduction is to be 
measured in a frame that carries A B  into A’B’ after time r2.  In  this case the energy 
transport - r , R  x q1 does not form part of the conducted heat, but the rotation alters 
the effective direction of q from AH to A’B’, giving 

(5.2) 

The transformation of the independent velocity variable from w to c is not fully 

(5.1) 

4 = q1 - 7 2  Dq, + T,R X q1 + . . . . 
This argument is not conclusive, but i t  shows that the physical description attached 
to figure 1 is based on a definition of c that  gratuitously introduces frame-dependence 
into heat flux. 

Let a(r, w ,  t )  be a vector specified in the L-frame and let A(r, c,  t )  be the same vector 
specified in the fully convected 0 frame, i.e. a frame that rotates with angular velocity 
R relative to L. Denote differentials in the O-frame by do;  then by (5.1) 

dw = dt+dr-e ,  e = V v ,  

so that 

da = -dt+dr-*+{dc+($-R Sa x c ) d t + d r * e } * g .  
at Sr 

Thus 

equals da provided that, 

dt+dr----+dc*- aA aA 
Sr ac 

(5 .3)  
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I t  follows that 
da - aa aa aa 
dt at ar a w  

dt ac 

- - - + w - - + F - -  

transforms into 
aA 

(5.4) -- do A - D*A + c- V A  + (F-  Du - c- es)*- ,  
since 

c . e - 5 2 x c  = c - ( e + / x O )  = c . ( e + g ( @ - e ) )  = c * e s  

where es is the symmetric part of e,  and D*A denotes the frame-indifferent time 
derivative a 

D*A = DA-SLX A ,  D E - + u * V .  (5 .5)  at 

The result contained in (5.4) is readily generalized to the following. Let Y represent 
a scalar Ys, a vector Yv or a symmetric tensor Yt, then its rate of change 9*Y in 
the O-frame equals its rate of change dY/dt in the L-frame, provided that 

(5.6a) 
au 
ac 

9 * Y  = D * Y + c - V Y + ( F - D u - c . e S ) * - - ,  

where 

The operator B* is a frame-indifferent time derivative - see the remark following 
(3.17). 

We are now able to correct the theory of $$2 and 3 to a frame-indifferent form by 
the simple modification of replacing the frame-dependent operator 9 defined in (2.5) 
by B*. It will be sufficient to list a few of the important changes. 

D*Ys = DYs, D*Yv = DYv-52 x Yv, D*Yt = DYt-2252 x Yt. (5.66) 

For (3.11) we now have 

9; = D $ + c * v + e - c . e J ) * k ,  a 9; = gr  ( r  2 I ) ,  
(2.14a) becomes 

The first-order theory in $ 3  is unchanged. For (3.6) and (3.10) we have 

0 0  9: w = +g-+ww.h- w e e ,  e = es-+&/.  

$, = - T C ~ $  + $1 9; info + g1 Info>, 
0 0 

9 $ h = D ; h + c * V h ,  9 $ i = D : e + c * V e .  

The effect on (3.11) i s  to replace DVT-e*VT by D*VT-$*VT-+zVT,  and 
D;-2e*c! by D * d - 2 e e e - $ e e ,  with the consequence that the Burnett equations 

(3.13) and (3.13) are corrected to 

0 0 x o  

k T 
- --p~?(t?,V* uVT + O,(DVT- 52 x V T )  + 8 , - V p * i +  3e5VT.6) ,  (5.7) 

' - m  P 
with 

e, = y(3-$) ,  e, = y ,  e, = -3 ,  8, = 3, e, = ~ + s ,  
0 

x2 = pT;{mlV.oe+n,(nd-352i i )+w3-VVT+m4-VpVT 0 k A  1 0  

m PT 

mT 
with 

a, =+(3-s ) ,  m, = 2, mg = 3, m4 = o ,  w5 = 3s, = 4. 
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6 .  Conclusions 
Returning to the discussion in the last paragraph of §4, the author now believes 

Burnett’s equations to  be flawed, not because of an error intrinsic to the Chapman- 
Enskog theory, but simply because of an inadequate definition of what is meant by 
the ‘peculiar velocity ’, an imprecision that also vitiates the physical arguments 
supporting Burnett. Of course one could take the view that it is merely a question 
of definition, e.g. that  p and p’ in (3.17), 

p’ = p + 4 p r 3 ~ ,  o x e, 

specified in L and L‘ respectively, correctly represent different pressure tensors. In  
such a model, ‘pressure tensor’ does not refer to an objective property, viz one 
independent of the observer’s motion, but, provided that its definition is kept in mind, 
no error need result. However, i t  is certainly preferable to  describe reputed ‘ material ’ 
properties objectively if possible; further, as the dissipation rate D in a system is 
certainly objective once the observer’s timescale has been decided, the constitutive 
relations must at least render D frame-indifferent. 

Constitutive relations in which the vorticity 252 plays a leading role are not 
necessarily frame-dependent, even if not combined with a time derivative as in (5 .6b) .  
Rotating superfluids provide a well-known example (see e.g. Woods 1975), with the 
vorticity quantized into vortex lines, the strength of each line being frame-indifferent. 
Another example occurs in suspension mechanics (Ryskin 1980), where the rotational 
motion will change the structure of the microscale fluid motion around a particle, 
perhaps to the extent of generating a Taylor column. But as the microflow is 
objective, generating the same dissipation for all observers, i t  should be possible to 
specify the associated constitutive equation in a frame-indifferent form. I n  this 
example the vorticity 252 appearing in D is measured in the laboratory frame L 
(defined by the absence of rotational effects), and hence has a value independent of 
the observer’s motion. 

I n  an appendix to Ryskin’s (1980) paper, Ryskin and Rallison make the point that 
observers may be unable to avoid giving a frame-dependent description of what they 
admit should be an objective property, e.g. they may not be able to find the inertial 
frame in which a is to  be measured. (As if with (6.1) the observer in L appreciates 
that p should be objective, but has no way of finding the correct frame in which to 
define p. )  However this may be, when frame-dependent constitutive equations are 
used to evaluate D, if this rate is not frame-indifferent, the model is wrong. 

To sum up, in the author’s view, while frame-indifference is a fundamental principle 
only for the dissipation rate, i t  is a convenient and desirable property for constitutive 
relations that can sometimes be achieved by taking care with definitions. 

(6.1) 
0 

Professor A. E. Green and I recently debated several axioms of continuum 
mechanics (Woods 1981, 1982b; Green 1982), an important one being material 
frame-indifference. I am pleased to acknowledge that for this axiom his convictions 
were sound, whereas my confidence in the opposing evidence from kinetic theory etc. 
was misplaced. 
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